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A phenomenological approach which takes into account the basic geometry and 
topology of percolation fractal structures and of self-avoiding walks (SAW) is 
used to derive a new expression for the Flory exponent describing the average 
radius of gyration of SAWs on fractals. We focus on the radius of gyration and 
discuss the importance of the intrinsic fractal dimensions of percolation clusters 
in determining the lower and upper critical dimensions of SAWs. The mean-field 
version of our new formula corresponds to the Aharony and Harris expression, 
who used the standard Flory approach for its derivation. 

KEY W O R D S :  Self-avoiding walks; percolation; fractals; random walks; 
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The statistics of self-avoiding walks (SAW) on lattices with quenched 
random disorder, which is relevant to the behavior of chain polymers in 
porous media, has been investigated with keen interest during the last 
decade.(1 14) The principal quantity of interest in most studies is the mean 
square radius of gyration of a SAW of N steps, which (for asymptotically 
large N) scales as 

N2V saw (R2)  (1) 

Here v saw is the universal critical exponent, which for the pure lattice case 
depends only on the Euclidean dimension d. A very good mean-field 
estimate for v sAw for Euclidean lattices is given by the Flory formula(~S): 

3 v saw = (2) 
2 + d  
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The formula is exact for d =  1, 2, and 4 ( d = 4  being the upper critical 
dimension) and slightly overestimates the d =  3 case for which vSAW= 
0.592--+0.003 from the series expansion of Guttmann. (16) De'Bell and 
Jan (17) found vSAW=0.591 +,0.001 from Monte Carlo calculations, which 
corresponds nicely with Guttmann.  In a random lattice with quenched 
disorder a fraction p ( <  1) of bonds (sites) is occupied at random; below 
Pc, the percolation threshold, (18) no infinite cluster exists. As long as 
P>Pc, both the analytical studies (4'5'7'13) and the numerical calcula- 
tions (3'1~ SAW on percolation clusters reach the same conclusion that 
•pSAW = Vp" SAW= 1 ' i.e., vp saw stays at the pure lattice value; there is no change in 
the critical behavior of SAWs in random lattices for p > Pc. This agrees 
with the extended Harris '  criterion (19"4) applied to the n-vector model in the 
n ~ 0 limit. Unlike the p > p~. case, the studies on the critical behavior of 
SAW on the percolation fractal, i.e., exactly at p = Pc, are rather contro- 
versial. An early Monte Carlo simulation (3~ on the diamond lattice 
concluded that, at p = Pc, the Flory exponent of SAWs crosses over to a 
different value vSA w (>"  SAW, vp= 1), SO that in d = 3 ,  vSAW~0.67. A recent 

Pc 

numerical simulation, (1~ on the other hand, concludes that, within the 
error limits, vSAWpc =VP=l" saw. moreover, this should also agree with Kremer 's  
result (3) after reanalyzing the data. (1~ Contrary to this recent suggestion, 
real-space renormalization-group studies (7'13) and field-theoretic treat- 
ments (13) conclude that the exponent v saw is determined by a new fixed 

Pc 

point, different from that of the pure system, which leads to v saw -~ v saw 
Pc ~ p= 1 " 

Thus, the e expansion (13) near the percolation fixed point, where e = 6 -  d, 
leads to vSAW= 1/2+e/42  to first order in 5. The exact enumeration 

Pc 

analysis (13) for d = 2, 3, 4, and 5 percolation clusters at p = Pc also supports 
the idea that vSaW:~vSAW'pc T p = l ,  the values obtained are vs~w=0.76+0 .08 ,  
0.67 +_ 0.04, 0.63 -+ 0.02, and 0.54 -t- 0.02 for d = 2, 3, 4, and 5, respectively. 
Different analytical studies, (3'8'9'1.'12) which center on calculating modified 
Flory formu!as for v saw at p = Pc, also reach the conclusion that vSAWr 

Pc Pc 

vSAW and tha: v saw is dependent on various fractal characteristics of the 
p ~ l  Pc 

percolation clusters. 
In this paper, we derive, considering the basic geometry and topology 

of percolation fractals and also SAW properties, a new formula for Vp~ saw. 
Using our expression, we are able to investigate the lower and upper critical 
dimensions of SAWs on arbitrary fractal lattices. The mean-field 
approximation of our expression is the same as that of Aharony and 
Harris, (m derived along the lines of the standard Flory approximation, 
and also the same as that of Bouchaud and Georges, (12) derived using a 
different statistical approach. 

We start from GN(r), the number of configurations of a SAW of N 
steps with radius of gyration r (not end-to-end distance). We focus on 
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GN(r ) on percolation fractals, i.e., at p = Pc. The value of GN(r) is severely 
constrained through the very basic geometry and topology of percolation 
fractals and of SAW statistics. Thus, GN(r ) must be exceedingly low in two 
extreme situations: 

(a) When r < N  I/a~, where de is the fractal dimension of the back- 
bone of the percolation cluster. (18) This is so because the SAW chain moves 
on the backbone (otherwise it would be trapped on the dangling ends) and 
the minimum radius of gyration corresponds to a collapsed chain. 

(b) When r>N~/am'L where dmi n is the fractal dimension of the 
shortest (chemical) path on the percolation cluster. (2~ Note that paths on 
the percolation cluster are very tortuous. The maximum radius of gyration 
of the SAW (i.e., the most fully-stretched configuration) corresponds to the 
longest achievable r distance by a SAW of a given number of steps N. This 
is equivalent to determining, for a given value of r, the minimal number N 
of SAW steps needed to reach r. The relation between N and r is represented 
by the exponent dmi n- 

The above expressions allow us to extend to percolation clusters an 
argument given by Lhuillier(21); in ref. 21 the pure lattice case was 
considered, for which one has de = d and dmi~ = 1. Setting GN for the total 
number of configurations of a SAW of N steps, one has 

GN(r ) = GxPN(r )  (3) 

where PN(r) is probability distribution function of the radius of gyration. 
As discussed above, Pu(r) must decrease strongly for r < N  1/aB and for 
r > N  ~/dml". With this requirement we remark, following ref. 21, that for 
small r the free energy of the SAW is dominated by a term (N/rdB) ~, which 
may be thought of as being the repulsive energy between distant basic 
units, and for large r by a term (r/Nl/dmm) ~, which represents a configura- 
tional entropic term. Here ~ and ~ are unknown positive exponents 
(possibly different from the pure lattice values). We thus assume for 
percolation fractals the following expression: 

r 6 

Now, the most probable radius of gyration of a SAW is given by the 
maximum of PN(r). Calculating the maximum in Eq. (4) and reexpressing 
r as a function of N leads to 

vSAW = 1 + k/drnin (5)  
pc de + k 
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where k is the (positive) exponent ratio: 

k = 6 / e  (6) 

Having the scaling relation (2~ 

dB 
drain = ~ (7) 

dL 

where dL B is the spreading or the connectivity dimension (2~ of the backbone 
of the percolation fractal, we can write 

vSAW_ 1 dB + kdBL (8) 
pc d~ d s + k  

It is to be noted that apart from dB and dL e, the expression for v saw Pc 
depends on the ratio k, a typical property of the radius of gyration 
distribution function; but not on the individual values of 3 and e. 
Moreover, notice that we derived Eq. (8) directly from Eq. (4) without any 
additional (e.g., mean-field) approximations. At this stage, to the best of 
our knowledge, there exists no accepted determination of the distribution 
of the radius of gyration for a SAW on percolation fractals or, for that 
matter, even for a SAW on pure lattices. We thus cannot compare Eq. (4) 
to literature data; this also prevents us from finding out the exact values of 
v sAw for different dimensions from Eq. (8), because for this we need to p~ 
know k. On the other hand, Eq. (8) allows us to extract some important 
information, as we proceed to show. 

Let us first calculate the upper critical dimension d c of a SAW on a 
fractal lattice, d c is defined as that dimension for which the SAW statistics 
will behave in a mean-field-like way, i.e., vSAW= 1/dw.B, where dw~ is the Pc 
fractal dimension of random walks on the backbone of the percolation 
fractal. (9'a8~ The other way to express this fact is that the repulsive energy 
part in the total free energy of a SAW chain becomes independent of N. 
The term 2V 1 +~/r ~dB in Eq. (4) can be thought of as being proportional to 
the number of contacts between distant basic units, i.e., as giving the 
repulsive energy. (al~ We now use the Alexander-Orbach relation (22) that 
dw, B = 2dB/d~, where d~ is the fracton (or spectral) dimension (22) of the 
backbone of the percolation fractal. At dc the mean-field value of e is 1, (2D 
so that, with r ~ N 1/dW,B, the repulsive energy part will be proportional to 
N 2 d~/2. Therefore, the SAW statistics on fractal lattices will behave in a 
mean-field-like way if and only if ds B ~> 4, in accordance with the conclusion 
of Rammal et al. (8~ (for pure lattices ds B = d and thus dc = 4). 
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Consider now the lower critical dimensionality ~7c of a SAW on fractal 
clusters; d~ is defined as being the dimensionality at which the SAW fractal 
dimension equals the fractal dimension of the embedding lattice. Thus, for 
percolation clusters at ~7 c one has vpSAW= 1/dB. If we take up our formula 
(8) for v saw and use it to find ~7 c, we see that a SAW chain on a fractal 

Pc 

lattice is on its lower critical dimension if dg (not riB) of the lattice is equal 
to 1. For  pure lattices d~ = d and thus we have dc = 1. Thus, we see that 
the upper and lower critical dimensions of SAW on fractal lattices depend 
solely on the intrinsic topological fractal dimensions (d e and d B L ~  

respectively), and not on the extrinsic geometric fractal dimensions. 
We are now in the position to analyse the result of Lee et al. (I~ that 

vSAWpc = vSAWp=l. Then in dimensions 4 and 5 for percolation fractals one 
would have vSaWpc ---- 1/2 since Vp- SAW= 1 = 1/2 for d = 4 and 5. On the other hand, 
for percolation clusters in d =  4 and 5 the value ofdB is less than 2. (23) This, 
together with vSAW= 1/2, leads to the conclusion that in d =  4 and 5 the 

Pc 

SAW fractal dimension would be greater than dB, the dimension of the 
embedding fractal, which is clearly impossible. Our analysis thus supports 
the conclusion of Meir and Harris (13) that v saw is in general different from 

Pc 
. S A W  v saw' from our phenomenological formula (8) we read off that vp, 

p ~ l '  

should lie midway between the bounds of 1~de and d~/dB. 
Next, we come to the percolation cluster in d = 6, for which de = 2 and 

d ~ =  1. (~~ From our expression (8) we find for this fractal vSAW= 1/2, 
pc  

which reconfirms ref. 13. We like to stress here that on d = 6 ,  v saw is 
Pc 

exactly equal to 1/2 ( =  l/de) because SAWs on d =  6 here are at the lower 
critical dimension ~ ,  since d ~ =  1 in d = 6 .  This means that the SAW 
radius of gyration (as well as the end-to-end distance) on d =  6 percolation 
clusters will be Dirac-delta distributed. From this finding we also conjecture 
that there will be no collapse transition of SAW chains on d =  6 percolation 
fractals, a fact which is due to the topology of the fractal lattice structure 
itself. 

Now we present a mean-field version of our phenomenological expres- 
sion (8) for v saw For  this, we have to calculate the "ideal" (i.e., mean- 

Pc " 

field) value of k (=6/c  0 in Eq. (8). The term N(r/N1/d~'@ in Eq. (4) can 
be thought of as being the elastic energy part, (2~ which arises from the 
configurational entropic term. In the mean-field approximation one can 
write this elastic energy term as 

N ~ ~ - l n  @N(r) (9) 

where ~ON(r) is the probability distribution of random walks on the 
backbone of the percolation fractal. 
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According to Havlin and Ben-Avraham, (9~ C r ~ N ( r  ) is not Gaussian, but 
follows rather 

r u 

where u ( r  is an unknown exponent. Putting Eq. (10) into Eq. (9) and 
comparing the r terms and the N terms, we get 

6 = u and 1 - -  c] /dmi n = u/dw, e 

i.e., we obtain 

dw Bdmin 
~ = u =  " (11) 

dw.B - drain 

Very recently Harris and Aharony (24/ derived in a completely different 
manner (in the context of superlocalization of impurity quantum states for 
a tight-binding model on random fractal structures) the same expression 
for u as in Eq. (11) for the quenched average case. But here we see that the 
correct expression for u follows easily from Eq. (8), derived considering the 
gyration radius and the basic geometry and the topology of the fractal 
structure. With this value of 6, Eq. (11), and the mean-field value of 
( =  1), (21) we get for k =  6/~ the mean-field result 

k= dw'Bdmin (12) 
dw, a - drain 

(Note that for pure lattices in all dimensions dw, B---2 and drain = 1 and 
thus one has as mean-field value k = 2  for all dimensions; this result is 
exact for d = 1, 2, and 4 and is slightly off in d = 3.) 

Putting Eq. (12) in Eq. (8) and with d m i  n = d~/d~, we get the mean- 
field expression for vpSA w as 

4dL - d s  (13) S A W  1 B B 

VPc de 2d~ - d~ + 2 

The same expression was found recently by Aharony and Harris, (m using 
a standard derivation of Flory formula. Comparisons with numerical 
results are summarized in Table I for percolation fractals in different 
dimensions as well as for some nonrandom fractals such as Sierpinski 
gaskets and Koch curves. The agreement is quite good within the error 
limits of the numerical data. Thus, the mean-field value of k (=6/~) gives 
good agreement of v saw with its numerically determined values. We note 

Pc 
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Table I. Exponent v saw for SAWs on Different Fractal Lattices 
Pc 

and Comparison between Numerical (or Exact) Values and Equation (13) 

vSAW 
Pc 

d dB d~ ds ~ Eq. (13) Other 

Percolation fractal 

2 1.61 _+ 0.01 (2sl 1.43 (26) 1.25 _+ 0.01 (8) 0.77 0.767 (7) 
3 1.75 +0.01  (27) 1.26 +_0.031271 1.23 +_0.03 (8) 0.66 0,67 +_0.04 (13) 
4 1.9 _+0.2 (23) 1.18 (9) 1.18 _ 0.0518) 0 . 6 2  0.63+0.02 (13) 
5 1.93 +_0.16 (23) 1.14 (23) 1.18 (8) 0.56 0.54 +_0.02 (18) 
6 2 1 1 l/2 i/2 (13) 

Sierpinski gasket 

2 In 3/ln 2 (8) In 3/ln 2 (8) 2 In 3/ln 5 (8) 0.825... 0.798 ...(8) 
3 2 (8) 2 (8) 2 In 4/ln 6 (8) 0.724... 0.718../8) 

Koch curve 

2 In 5/In 3 (8) In 5/ln 3 (8) 1.2427 (s) 0.855... 0.891 ...(8) 

tha t  it w o u l d  be rea l ly  in te res t ing  to  h a v e  a g o o d  M o n t e  C a r l o  s i m u l a t i o n  

for  P N ( r )  of  S A W s  on  p e r c o l a t i o n  f rac ta ls  to e s t ima te  k a n d  thus  to  

d e t e r m i n e  w h e t h e r  k rea l ly  t akes  the  mean- f i e ld  va lue  o r  n o t  for  all 
d imens ions .  
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